
SCHOOL OF MATHEMATICS AND PHYSICS

Mathematics Challenge–2023–24

Brief solutions

Note that each problem may have several different solutions

by various methods.

Problem 1. The two bowls of a balance scale contain 2024 iron balls of two sizes, but each bowl
contains only balls of the same size. The scales are in equilibrium. If 53 balls were to be taken off
the left bowl, then transferring 100 balls from the right bowl into the left bowl would restore the
equilibrium. How many balls are in each bowl?

Solution of Problem 1. If l is the weight of a ‘left’ ball, and r of a ‘right’ ball, then 53l = 200r,
whence l = 200r/53. Let x be the number of ‘left’ balls. Then xl = (2024 − x)r, whence by
substituting we get x · 200r/53 = (2024− x)r; 200x = 53 · (2024− x); x = 424 balls (on the left
bowl), and 2024− 424 = 1600 balls on the right bowl.
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Problem 2. A triangle ABC is inscribed in a circle. Given ∠CAB = α and ∠CBA = β, find the
angle between the tangent to the circle at the point C and the straight line through A and B.

Solution of Problem 2. By the alternate segment theorem, ∠BCD = α. Hence ∠BDC = 180◦ −
α− (180◦ − β) = β − α.

Comments on submissions and solutions of Problem 2. Some contestants also included a
proof of the alternate segment theorem, although this was not required and proofs simply referring
to this theorem were given full marks. One can also correctly note that the answer is α−β if β < α,
contrary to the picture in the question, and that there is no intersection point D if α = β, when the
tangent is parallel to AB.

Problem 3. Find all positive integers x, y, z satisfying the equation 2x + 3y = z2.

Solution of Problem 3. We use the following notation: N is the set of positive integers; a | b means
that an integer b is divisible by an integer a, and a - b if not; we also write a ≡ b (mod c) if a and b
have the same remainder after division by c, read as “a is congruent to b modulo c”.

First note that 3 - z, since 3 - 2x as x is a positive integer. Then z2 ≡ 1 (mod 3), since (3k + 1)2 ≡
1 (mod 3) and (3k + 2)2 ≡ 1 (mod 3) for k ∈ N. Hence 2x ≡ 1 (mod 3), which implies that x is even:
we have 22k ≡ 4k ≡ 1k ≡ 1 (mod 3) and 22k+1 ≡ 2 · 22k ≡ 2 · 1 ≡ 2 (mod 3).

We write x = 2k for k ∈ N and then factorize 3y = z2 − 22k = (z − 2k)(z + 2k). Each factor
on the right must be a power of 3; write z − 2k = 3l and z + 2k = 3y−l. Then the difference
(z + 2k)− (z − 2k) = 2k + 2k = 2k+1 is equal to 3y−l − 3l, which is divisible by 3 unless l = 0. Since
3 - 2k+1, we have l = 0.

Thus, z − 2k = 1 and z + 2k = 3y, whence 2k + 1 + 2k = 3y, that is, 2k+1 + 1 = 3y. One can easily
show that odd powers of 3 have remainder 3 modulo 4, and since 2k+1 + 1 has remainder 1 modulo
4 (as k ∈ N), we must have y = 2n even.

Then 2k+1 = 32n − 1 = (3n − 1)(3n + 1). Each factor on the right must be a power of 2, while
the difference between them is 2. This clearly only happens for 2 and 4, so that 3n − 1 = 2 and
3n + 1 = 4. As a result, n = 1, y = 2, 2k+1 = 8, k = 2, x = 4, and then from 24 + 32 = z2 we get
z = 5.

Comments on submissions and solutions of Problem 3. One can arrive at the same conclusion
using other divisibility considerations, as was indeed achieved in some submissions. However, simply
guessing the correct answer 4, 2, 5 is not nearly enough without proof that there are no other solutions.
The fact that 2 and 4 are the only powers of 2 (with positive integer exponents) that have difference
2 was also proved in some submissions, but assuming this fact as obvious was allowed for getting full
marks if other arguments were correct.
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Problem 4. A circle is inscribed in an angle with vertex V with tangency points A, B. The straight
line parallel to V B passing through A intersects the circle at another point C. The straight line
through V and C intersects the circle at another point D. The straight line through A and D
intersects the line V B at a point M . Prove that M is the middle point of the segment V B.

Solution of Problem 4. Since V A = V B, we need to show that VM : V A = 1 : 2. By the sine
theorem (‘sine rule’), we have VM : sin∠V AM = V A : sin∠VMA; therefore all we need to show
is that sin∠V AM : sin∠VMA = 1 : 2. We know that sin∠VMA = sin∠BMA, since ∠VMA =
180◦ − ∠BMA, and that ∠BMA = ∠AVM + ∠V AM . We also know that ∠V AM = ∠ACV by
the alternate segment theorem, and ∠ACV = ∠CVM . To lighten the notation, let α = ∠AVM
and β = ∠CVM . Then our task is to show that sin(α + β) = 2 sin β. Using the sine of the sum
formula, we transform this to sinα · cos β + cosα · sin β = 2 sin β, and then divide by cos β to obtain
sinα + cosα · tan β = 2 tan β, or equivalently, sinα = tan β · (2− cosα).

We now express sinα, cosα, tan β in terms of b = AB = CB and l = V A = V B using the right
triangles AV E and CV F , where E and F are the bases of perpendiculars dropped from A and C
onto the line V B.

But first we note that ∠ADC = ∠V DM = ∠AMB − β = α and therefore also ∠ABC =
∠ADC = α. Hence the equilateral triangles AV B and ABC are similar, and we can find AC from
the proportion AC : b = b : l, that is, AC = b2/l. Clearly, EB = BF = AC/2 = b2/2l, and then
V E = l − b2/2l and V F = l + b2/2l.

3



We now can find AE = CF =
√
b2 − (b2/2l)2 by Pythagoras, but in fact we do not need this

expression, just denote h = AE = CF . Then tan β =
h

l + b2/2l
from 4CV F . We also have

cosα =
l − b2/2l

l
and sinα =

h

l
from 4AV E. Substituting into the required equation sinα =

tan β · (2− cosα) we see that it holds true:

h

l
=

h

l + b2/2l
·
(

2− l − b2/2l
l

)
;

h

l
=

h

l + b2/2l
·
(

2l − l + b2/2l

l

)
;

h

l
=

h

l + b2/2l
·
(
l + b2/2l

l

)
.

Comments on submissions and solutions of Problem 4. One can also prove the required result
using the ‘method of coordinates’, that is, writing the equations of the circle, its tangents, finding the
coordinates of intersection points, etc.; such solutions were also given full marks. One does wonder
if there is also some ‘more geometrical’ solution, without much of the calculations.

Problem 5. The real line segment 0 6 x 6 1 is completely covered with 2024 intervals of various
lengths, possibly with overlappings. Prove that it is always possible to choose some of these intervals
in such a way that the sum of the lengths of the chosen intervals is at least 0.5 and any two of the
chosen intervals are disjoint.

Solution of Problem 5. It is more natural to prove the same result with an arbitrary number n
of intervals covering the segment [0, 1]. If there is an interval that is also completely covered by the
other intervals, then this interval can be discarded, as the others also completely cover [0, 1] and we
could choose the required pairwise disjoint ones with total length > 0.5 among these others. (The
same argument can be formalized as indiction on n: when n = 1 the result is clear; suppose that the
result is already proved for n = k, then for k + 1 intervals, if one of them is completely covered by
the other intervals, then we apply the induction hypothesis to these other k intervals and obtain the
required pairwise disjoint family with total length > 0.5.)

We can also assume that all the intervals are closed, that is, include their endpoints. Indeed, if we
add all endpoint to some possibly open or semi-closed intervals, then the resulting intervals will of
course also completely cover [0, 1], and if we succeed in choosing pairwise disjoint closed intervals with
total length > 0.5, then the intervals from which these were possibly obtained by adding endpoints
would also be disjoint with the same total length.

Therefore from now on we assume that neither of the intervals is completely covered by the other
intervals, and that all intervals contain their endpoints. We claim that then the intervals form a
chain like on this picture, where intervals have common parts with one another only in consecutive
pairs, without triple common parts, so that alternate intervals are disjoint:
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Here the intervals are depicted sightly raised above the real line for better visibility, and alternate
intervals are at the same level.

To better formulate and rigorously prove this claim, let us numerate the intervals in the order in
which their left endpoints appear on the real line from left to right, and let ak and bk be the left and
right endpoints of the k-th interval. Note that our intervals must have different left endpoints, since
otherwise one would cover the other, contrary to our assumption. Thus, we have strict inequalities
a1 < a2 < a3 < · · · . We claim that, moreover, we have the inequalities

a1 < a2 6 b1 < a3 6 b2 < a4 6 b3 < a5 6 · · · ,

as in this example with n = 6:

In other words, for our n intervals we prove by induction that ak+1 6 bk < ak+2 for every k =
1, 2, . . . , n− 2. In particular, the strict inequalities bk < ak+2 will mean that the intervals with odd
indices are pairwise disjoint, as well as that the intervals with even indices are pairwise disjoint. We
also need the inequalities ak+1 6 bk for the argument to work by induction.

At the base of induction k = 1, we need to show that a2 6 b1 < a3. If we had a2 > b1, then the
points of [0, 1] between b1 and a2 would not be covered at all; hence a2 6 b1. If we had b1 > a3,
then one of the intervals [a2, b2] or [a3, b3] would be covered by other intervals, depending on whether
b3 6 b2 or b3 > b2 (we already know that a2 6 b1):

Here two possibilities for b3 are shown on the same picture. This contradicts our assumption that no
interval is covered by the others. Hence b1 < a3.

Now suppose that the inequalities ak+1 6 bk < ak+2 hold for all k < m < n − 2; we now
prove that am+1 6 bm < am+2. If we had am+1 > bm, then, in view of the previous inequalities
a1 < a2 6 b1 < a3 6 · · · b2 < a4 6 b3 < a5 6 · · · am 6 bm−1 < am+1 assumed by induction, the points
of [0, 1] between bm and am+1 would not be covered at all; hence am+1 6 bm. If we had bm > am+2,
then one of the intervals [am+1, bm+1] or [am+2, bm+2] would be covered by other intervals (depending
on whether bm+2 6 bm+1 or bm+2 > bm+1 (we already know that am+1 6 bm):

Here two possibilities for bm+2 are shown on the same picture. This contradicts our assumption that
no interval is covered by the others. Hence bm < am+2.
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Thus, we have established the inequalities

a1 < a2 6 b1 < a3 6 b2 < a4 6 b3 < a5 6 · · ·

The strict inequalities bk < ak+2 mean that the intervals with odd indices are pairwise disjoint, as
well as that the intervals with even indices are pairwise disjoint. Their total length is at least 1, so
one of these sets of intervals (with even indices, or with odd indices) must have total length at least
0.5.

Comments on submissions and solutions of Problem 5. Clearly, after removing (say, one by
one) the intervals that are completely covered by the others, the remaining intervals do completely
cover [0, 1]. It is tempting to immediately claim that then ‘obviously’ the intervals with odd indices
are pairwise disjoint, as well as that the intervals with even indices are pairwise disjoint, and then
the result follows as at the end of the solution above. But this is not that obvious, and a rigorous
proof was required. Without such a proof, only partial marks were given to such solutions. The finer
point about endpoint of the intervals was not taken into account, so if a submitted solution assumed
that all intervals were closed (or all open), no marks were deducted.

Problem 6. Given a table 7× 7, in how many ways can one fill it with numbers 0 and 1 so that the
following two conditions simultaneously hold:

(a) the sums over the 7 rows are all different, and
(b) the sums over the 7 columns are all different?

Solution of Problem 6. There are 8 possible sums for each row or column: 0, 1, . . . , 7. Therefore
exactly one of these numbers must be missing among the sums over rows and among the sums over
columns. Since the sum of the sums over rows is equal to the sum of the sums over columns (as this
is the sum of all entries), the missing number is the same for rows and for columns. This missing
number can only be 0 or 7. Indeed, otherwise there is, say, a row with all 1s, and a column with all
0s, which is impossible in view of their intersection. For every arrangement of missing 0 type there
is a complementary arrangement of missing 7 type, when all 0s are replaced by 1s and all 1s by 0s.
Every arrangement is obviously of only one type. Therefore the total number of arrangements is
double the number of arrangements of a single type.

Consider for definiteness arrangements of missing 0 type. Note that such do exist: for example put
1s in the diagonal cells and in all cells above the diagonal. Let us call this the initial arrangement.

1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1

6



Every permutation of rows produces another ‘good’ arrangement. Different permutations produce
different arrangements, since the order of row sums changes. The same applies to permutations of
columns. Thus we obtain 7! · 7! different arrangements for the given missing 0 type. Together with
the same number of missing 7 type, this amounts to 2 · 7! · 7! arrangements with required properties.

It remains to prove that there are no other arrangements (say, of missing 0 type). For that it is
sufficient to show that any good arrangement can be transformed by a permutation of columns and a
permutation of rows to the initial arrangement; then the reverse permutations produce this good one
from the initial one as described in the preceding paragraph. Just rearrange columns in such a way
that the sums over the columns are 1, 2, 3, . . . , 6, 7 when read from left to right, and then rearrange
rows in such a way that the sums over the rows are 7, 6, 5, . . . , 2, 1 when read from top to bottom.
Then the 7th column is filled with 1s, the 6th column must have 0 at the bottom (and only 1s above
it), since the only 1 in the bottom 7th row is in the 7th position, the 5th column must have two 0s
at the bottom (and only 1s above), since the only 1 in the bottom 7th row is in the 7th position and
the only two 1s in the 6th row are in 6th and 7th positions, and so on; this is the initial arrangement
as required.

Comments on submissions and solutions of Problem 6. The explanations why there are no
other arrangements were given to varying degree of rigour. But the problem was regarded as nearly
completely solved if the existence of 2 · 7! · 7! arrangements was shown.

7


